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Abstract

The interface-capturing-fidelity issue of the level set method is addressed wholly within the Eulerian framework. Our
aim is for a practical and efficient way to realize the expected benefits of grid resolution and high order schemes. Based
on a combination of structured adaptive mesh refinement (SAMR), rather than quad/octrees, and on high-order spatial
discretization, rather than the use of Lagrangian particles, our method is tailored to compressible flows, while it provides
a potentially useful alternative to the particle level set (PLS) for incompressible flows. Interesting salient features of our
method include (a) avoidance of limiting (in treating the Hamiltonian of the level set equation), (b) anchoring the level
set in a manner that ensures no drift and no spurious oscillations of the zero level during PDE-reinitialization, and (c)
a non-linear tagging procedure for defining the neighborhood of the interface subject to mesh refinement. Numerous com-
putational results on a set of benchmark problems (strongly deforming, stretching and tearing interfaces) demonstrate that
with this approach, implemented up to 11th order accuracy, the level set method becomes essentially free of mass conser-
vation errors and also free of parasitic interfacial oscillations, while it is still highly efficient, and convenient for 3D parallel
implementation. In addition, demonstration of performance in fully-coupled simulations is presented for multimode Ray-
leigh–Taylor instability (low-Mach number regime) and shock-induced, bubble-collapse (highly compressible regime).
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We are working on the direct numerical simulation of interfacial instabilities in compressible multi-fluid
flows and at the foundation of our approach we have adopted the level set method [28,29,35]. In a previous
paper we addressed issues of coupling the flows on either side of the interface coherently with capturing the
interface motion in an adaptive mesh refinement environment (as needed for the simulation of real flows of
practical interest) [26]. In that development we paid special attention to the dynamics of sharp capturing at
high acoustic impedance mismatch interfaces. In the present paper we focus on the kinematics of the interface
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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itself, and we address issues of fidelity via higher grid resolution along with higher-order-accurate schemes, as
made evident by Sethian [35], Osher and Fedkiw [29], Peng et al. [30], and others. More specifically, we will
examine fidelity at the limits of grid resolutions, not only as expressed by mass conservation, but also by pres-
ervation of interfacial topologies, and by spurious, even if bounded, numerically-induced oscillations, as they
could be damaging to the predictive capability we wish to attain.

These fidelity issues have been well known for some time (e.g., [32]), but were addressed effectively only very
recently ([8,9,15] – see Table 1 for related work leading up to these). The approach [9] involves increasing the
resolution through adaptive mesh refinement, implemented by means of the quad/octree-based algorithms,
and incorporating particle-tracking features, implemented through Lagrangian markers ‘‘seeded’’ around
the interface (PLS). As indicated in Table 1, with one exception all this work was done in the context of incom-
pressible flow. For compressible flows, the structured adaptive mesh refinement (SAMR) is the preferred algo-
rithm (to quad/octrees) [19], as spurious wave-reflections on interfaces of grids with different resolutions [7] are
minimized. Furthermore, rather than marker particles, we thought it pertinent to examine the potential role of
high order treatment for the advection operator. These two premises converge in suggesting the SAMR
Table 1
Works addressing the fidelity of the level set methoda

Ref. Year Method AMR C/I Order/scheme Test problems Coupled two-phase flow
simulations

Mulder et al. [21] 1992 LS – C 2nd, ENO2 – Rayleigh–Taylor and Kelvin–
Helmholtz instabilities

Sussman et al. [39] 1994 LS – I 2nd, ENO2 – Bubble rising; falling/colliding
drops

Rider and Kothe [32] 1995 VOF, LS,
MP

– I up to 4th,
limited

ST and SBR,
SVS, MVT2

–

Peng et al. [30] 1999 LS – I up to 5th,
WENO5

ST and SBR Volume-preserving mean
curvature flow; motion with
curvature dependent
acceleration; 3D double
bubble minimizer;
incompressible vortex sheet

Strain [37] 1999 LS Quad/
Octrees

I 2nd, unlimited ST and SBR,
SVS

–

Sussman et al. [41] 1999 LS SAMR I 2nd, ENO2 – Bubble(s) rising/merging; drop
oscillation/ impact on water
surface; collision of drops

Sussman and Puckett [42] 2000 Hybrid
LS + VOF

SAMR I 2nd, ENO2 ST and SBR Drop oscillation/impact on
solid wall; capillary instability;
bubble(s) rising

Enright et al. [8] 2002 Hybridb

LS + MP
– I up to 5th,

WENO5

ST and SBR,
SVS MVT2,
MVT3

Water poured into a
cylindrical glass

Enright et al. [9] 2005 Hybrid
LS + MP

Quad/
Octrees

I up to 5th,
WENO5

ST and SBR,
SVS MVT2,
MVT3

–

Present LS SAMR C/I up to 11th,
unlimited
HOUC

ST and SBR,
SVS MVT2,
MVT3

Rayleigh–Taylor instability;
shock-induced bubble collapse

The following notation is used: I: incompressible; C: compressible; VOF: volume of fluid; LS: level set; MP: marker particles; ST: simple
translation; SBR: solid body rotation; SVS: single-vortex stretching; MVT2/3: 2/3D multiple-vortex tearing.

a Mass conservation of the level set method coupled with compressible fluid dynamics solvers is also discussed in [10,22].
b An application to solid mechanics is also available [43].
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environment [2,26] – it provides us with simplicity to operate with as large a stencil as desirable, it is known to
perform excellently in compressible flow [19], and it is convenient for parallelization.

The question of high order treatment requires further elaboration. As we can deduce from Table 1, current
practice appears to have been limited to 5th order schemes, which, as well as all previous lower-order ones, were
employed in conjunction with embedded limiting (non-linear weights assigned to constituent parabolas). The
literature itself indicates that in this respect we have had a matter-of-fact choice that appears to be a remnant
from gas dynamics, an area of application that these schemes were developed for, and have influenced in a
major way [5,17]. What seems to have gone unnoticed is that such limiting, besides degrading the order of
the level set discretization (e.g., accuracy of WENO5 is actually between the 3rd and 5th orders), it is very expen-
sive, and in fact not needed for the purposes here (interfacial kinematics). In particular, we will show that with-
out any detriment to stability (demonstrated by von Neumann analysis for strong-stability-preserving Runge–
Kutta time discretization), unlimited upstream central schemes can be pushed to the 11th order, without sig-
nificant loss of efficiency in the overall computation, while performing at a level comparable to PLS.

More specifically, we numerically quantify the effect of increasingly higher order schemes, from the 3rd to
11th, and compare WENO (limited) vs. high-order upstream central (HOUC, unlimited) reconstructions of
undivided differences in the Hamiltonian. Due to extremely low numerical dissipation, and ability to appro-
priately carry-on topological information within their large-stencil treatment, HOUC schemes appear to sig-
nificantly improve the LS’s ability to capture/preserve corners and other poorly-resolvable interface features.
At the same time the Level Set’s natural ability for numerical regularization with a proper vanishing viscosity
solution is preserved.

The other key feature of our approach is the anchoring of the zero-level of the level set function during
reinitialization, so as to eliminate drift in a stable and non-oscillatory fashion. Our approach capitalizes on
the advantages of the PDE-based approach (high order, simple and parallelizable), without sharing the disad-
vantages (for our purposes here) of the fast marching (FM) method (low order, complex for parallelization).
This anchoring is a finishing touch to Sussman et al. [41] whose approach remedied drift, but as we show in
Section 4 could not eliminate spurious oscillations at the limits of grid resolution.

Following Rider and Kothe [32,33] and Enright et al. [8,9], fidelity of interface transport and reconstruction,
and mass conservation are demonstrated on a number of benchmark problems, involving significant interfacial
deformation, stretching, and tearing. These include translation of a thin filament, rotation and translation of a
crusiform, rotation of the Zalesak disk, 2D convection/stretching in a single-vortex, 2D convection/stretching
in a multiple-vortex, and 3D convection/stretching in a time-reversed double-vortex. All these tests involve
uncoupled simulations with prescribed solenoidal velocity fields. In addition, we present fully-coupled flows
(note that the compressible fluid dynamics is still treated using WENO schemes), including Rayleigh–Taylor
instability (Mach � 0), and shock-induced bubble collapse (Mach � 1.7 in the liquid phase).
2. Discretization of Hamiltonian: high-order upstream central (HOUC) schemes

The level set (u) equation [29,35] is a particular case of the more general Hamilton–Jacobi equation
otuþHðoju; rÞ ¼ 0; ð1Þ

where t, r = (x,y,z) and H ¼ F jruj are time, position vector and Hamiltonian, respectively. In general, the
speed function F depends on r and first derivatives of u, which makes Eq. (1) non-linear. For physical prob-
lems of concern here, the level set equation (1) can be reduced to the following simple advection form:
otuþ u � ru ¼ 0 ð2Þ

by setting the speed function F to
F ¼ u � n ð3Þ

where n ¼ ru

jruj is the normal vector to the iso-levels, and u = (u,v,w) is the material velocity field, externally
specified or available from a coupled fluid dynamics solver.

The consequence of this linear character of Eq. (2) is that instead of complex Riemann-solver-based tech-
niques for treatment of the Hamiltonian [35], one can use the following simple upwinding:



Table 2
High-order upstream central (HOUC) schemes

Scheme Undivided differences on the ‘‘left’’a, Dx;L
i;j;k CFL stability limits Sb

for SSP-RK3,3

UC3
1
6ui�2;j;k � ui�1;j;k þ 1

2ui;j;k þ 1
3uiþ1;j;k þOðDx3Þ 1.626

UC5
1
60½�2ui�3;j;k þ 15ui�2;j;k � 60ui�1;j;k þ 20ui;j;k þ 30uiþ1;j;k � 3uiþ2;j;k � þOðDx5Þ 1.435

UC7
1

420½3ui�4;j;k � 28ui�3;j;k þ 126ui�2;j;k � 420ui�1;j;k þ 105ui;j;k þ 252uiþ1;j;k � 42uiþ2;j;k

þ4uiþ3;j;k � þOðDx7Þ
1.244

UC9 � 1
630ui�5;j;k þ 1

56ui�4;j;k � 2
21ui�3;j;k þ 1

3ui�2;j;k � ui�1;j;k þ 1
5ui;j;k þ 2

3uiþ1;j;k � 1
7uiþ2;j;k þ 1

42uiþ3;j;k

� 1
504uiþ4;j;k þOðDx9Þ

1.127

UC11
1

2772ui�6;j;k � 1
210ui�5;j;k þ 5

168ui�4;j;k � 5
42ui�3;j;k þ 5

14ui�2;j;k � ui�1;j;k þ 1
6ui;j;k þ 5

7uiþ1;j;k � 5
28uiþ2;j;k

þ 5
126uiþ3;j;k � 47

9240uiþ4;j;k � 1
2310uiþ5;j;k þOðDx11Þ

1.050

a HOUC interpolations on the ‘‘right’’ Dx;R
i;j;k can be written similarly, applying stencil-symmetry; e.g., for UC3 : �1

6uiþ2;j;k þ uiþ1;j;k�
1
2ui;j;k � 1

3ui�1;j;k þOðDx3Þ.
b Dt < Sh=U max.
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½uoxu�i;j;k ¼
ui;j;k

D
x;L
i;j;kðuÞ
Dx if ui;j;k > 0;

ui;j;k
D

x;R
i;j;kðuÞ
Dx if ui;j;k < 0;

0 otherwise

8>>><>>>: ð4Þ
(shown for x-direction only), where D
x;L=R
i;j;k are undivided differences of the level set function at cell centers.

Moreover, since the level set is a smooth function, we have found that instead of traditionally used non-
linear essentially non-oscillatory (ENO2,3 or WENO5) schemes [17,18,29,35], one can apply simple unlimited
high-order upstream central (HOUC) discretization, without any detriment to numerical stability. That is, for
present purposes, the HOUCs are both more efficient and more accurate than the WENO schemes.

Using Taylor series analysis, HOUC schemes were constructed up to 11th order and they are shown along
with CFL stability limits (determined in the usual von Neumann manner with strong-stability-preserving
(SSP) time discretization methods [13], and in particular with three-level, third-order Runge–Kutta SSP-
RK3,3 scheme [36]) in Table 2. We can thus appeal to Strang’s theory [38] ensuring convergence as long as
the appropriate CFL limit is observed [11,17]. It must be noted that even though the first derivatives of the
level set function are discontinuous in the presence of corners, the HOUC schemes are sufficiently dissipative
to slightly smear them out, ensuring thereby overall stability of the method.

3. Structured adaptive mesh refinement (SAMR): tagging and localization

The density of an Eulerian data structure can be cost-effectively increased using AMR. Here, we utilize the
structured adaptive mesh refinement technology, developed by Berger and co-authors for hyperbolic conser-
vation laws [2–4], and implemented as the SAMRAI library [16,34,44] at the Lawrence Livermore National
Laboratory (LLNL).

Tagging. SAMR is based on a sequence of nested, logically rectangular meshes [2,24]. Tagging for refine-
ment is a very important ingredient for building an effective SAMR hierarchy. The objective is to refine the
grid around the interface, by first identifying all cells within the refinement corridor of radius (.h) (see
Fig. 1 for definitions), and then collecting them into rectangular refinement patches, Fig. 2, using the
point-clustering algorithm developed by Berger and Rigoutsos [4]. A simple way of doing this is to check
for the change in sign of the level set function across two neighboring cells (i,j,k) and (n), in all grid-line direc-
tions, as delivered by the condition (u(i,j,k)u(n)) 6 0. However, it is clear that this would miss subgrid scale fea-
tures. To detect these, we need a better approximation of shape, and this is delivered by a non-linear fit in



Fig. 2. Example of SAMR mesh with 3 levels of adaptation and refinement ratio 4.

Fig. 1. Definition of the LS localization and AMR refinement tubes.
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every location and each grid-line direction. This we refer to as non-linear tagging. In implementation, these
checks are performed only within a corridor around the interface (.h in Fig. 1), and the non-linear step is
employed only in cells where the linear tagging failed. A sample of the ‘‘linear tagging’’ failure and correspon-
dent remedy by ‘‘non-linear tagging’’ is shown in Fig. 3.



Fig. 3. Illustration of ‘‘spurious breakup’’ (a) and its elimination (b) for the ‘‘2D convection/stretching in a multiple-vortex’’ (see Problem
#7 in Section 5.1.1). Zero level (in red) and SAMR patches. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Localization. The efficiency of the level set method can be further improved by combining SAMR with
Peng’s et al. localization [30]. For this we need two additional localization tubes (Fig. 1). We solve the LS
equation only within the ‘‘outer’’ tube T ¼ ðx : juðxÞj < 1hÞ, where 1 and h are the radius of localization
and the spacing of the computational mesh, respectively. The ‘‘inner’’ tube TI is needed so as to create a
smooth transition from the actual, internal LS function to the external, cut-off values of it on either side. This
transition occurs in the annular space between the ‘‘inner’’ and ‘‘outer’’ tubes. In implementation, we need to
specify b and 1, as well as the ‘‘speed function vector’’. The latter is obtained from the material velocity as
follows:
1 Ste
2 Du
uðmodÞ ¼
u if juj 6 bh;

u 2jujþhð1�3bÞ
ð1�bÞ3h3 ðjuj � 1hÞ2 if bh < juj 6 1h;

0 if juj > 1h:

8><>: ð5Þ
The radii b and 1 are set to (s + 1) and (s + 3), respectively, where s is the stencil of the spatial discretization
scheme used.1

Localization is the key for our SAMR implementation. By setting . = s + 5 we ensure that 1 < .. Thus by
AMR-tagging the cells within a tube TR of the radius (.hf), the LS treatment is fully confined within the top
level of the SAMR hierarchy.

Communication of all SAMR levels is implemented through the ‘‘coarse-to-fine’’ prolongation and ‘‘fine-
to-coarse’’ restriction operators, for which we employ third-order-accurate bi-cubic spline interpolations [31].
The algorithm is parallelized (MPI-based), distributing the solutions on different patches between different
processors [16,34,44].
4. Reinitialization: anchoring the zero level

Due to discretization errors and the use of a cutoff function, Eq. (5), the level set tends to deviate from being
a signed distance function, leading to the development of ‘‘steep’’ or/and ‘‘flat’’ regions and affecting the accu-
racy of the interface curvature computation. Moreover, left alone, when such steep/flat regions become exces-
sive/extensive, small errors can result in spurious topological changes (appearance and disappearance of
‘‘islands’’, e.g. in the long tail of Fig. 4a). These errors can be prevented by using the ‘‘PDE-based-reinitial-
ization’’ procedure2 [30,39–41].
ncils s of UC3, UC5, UC7, UC9 and UC11 are 2, 3, 4, 5 and 6, respectively (see Table 2).
e to compatibility-with-SAMR issues [26], the ‘‘fast-marching-based-reinitialization’’ [1,35] is not an option here.



Fig. 4. The effect of reinitialization for the ‘‘2D convection/stretching in a single-vortex’’ (see Problem #6 in Section 5.1.1). (a) No
reinitialization, (b) PDESM-based reinitialization (40 iterations applied every Dt = 0.1). SSP-RK3,3/UC7 and WENO7 are applied for Level
Set equation and reinitialization, respectively. Single-level grid with resolution 1282. The cost of reinitialization is 28% more (CPU time),
compared to the same run without reinitialization.

Fig. 5. Effect of reinitialization on interface position. 10, 100 and 1000 reinitialization steps are applied for re-distancing around a slotted
disk. (a) Original Sussman’s PDE-based reinitialization [39]. (b) Improved Sussman’s PDE-based reinitialization [41]. (c) Present PDESM-
based reinitialization. SSP-RK3,3/WENO7 scheme. Single-level grid with resolution 502.
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The objective of this procedure is to ‘‘remold’’ the LS function so that it recovers its distance properties
(j$uj = 1), without affecting the zero level. One way of doing so is by letting u relax in pseudotime to
steady-state, according to PDE equation (1) with the following Hamiltonian:
H ¼ Sðjruj � 1Þ; ð6Þ

where S is some appropriate speed function that obtains zero value at the interface. The other general require-
ment on S is that it changes sign across the interface. It should be clear that at the limits of grid resolution,
unless special precautions are taken, this procedure will move the interface (‘‘drift’’) as in the original formu-
lation [39], or it would prevent attainment of steady-state, as in the improved formulation [41]. As illustrated
in Fig. 5, the latter eliminated the ‘‘drift’’, but ‘‘bounded oscillations’’ are still seen to exist.

To totally eliminate these oscillations we impose a special condition on S, so that the zero level is truly and
stably anchored on the interface. This is in addition to relieving the ‘‘drift’’ problem, also ensures reaching a
steady-state where j$uj = 1. The details of implementation are listed below. As illustrated in Fig. 5, this
anchoring provides further improvement in performance.

(a) At the beginning of each pseudo-time step, the speed functions eS of all cells in the immediate neighborhood of the interface are
computed minimizing the following ‘‘attractor’’ function:
F SM
MINðeS i;j;kÞ ¼

XN

m¼1

xm un
i;j;k þ DseS i;j;kð1�Duji;j;kÞ � uðAÞm$i;j;k

��� ���; ð7Þ
where Ds is the pseudo-time step of the SSP-RK3,3-based time advancement, and xm is the inverse-distance-based weight

xm ¼ 1=MAXð10�8 ; d2
mÞPN

r
1=MAXð10�8 ; d2

r Þ
of the mth subcell marker in the neighborhood of the cell (i,j,k). The ‘‘support’’ dataset of N subcell markers is sam-

pled within the ‘‘attraction radius’’ dm < 3h, where dm = jxi,j,k � xmj and x denotes radius-vectors of the mth marker and cell (i,j,k). Min-

imization function Eq. (7) is designed so that the PDE-reinitialization-based update of the distance function unþ1
i;j;k remains as close as

possible to the SM-based distance function uðAÞm$i;j;k . The latter one is formulated involving the following multi-dimensional Taylor expan-

sion applied to the level set function in the neighborhood of the cell (i,j,k) and subcell marker (m):
uðAÞm$i;j;k ¼ ðxi;j;k � xmÞnji;j;k þ jðuÞji;j;k þOðh3Þ: ð8Þ
Curvature terms j(u) are necessary to maintain the formal third-order accuracy of the method and they are computed as
(shown in 2D):
jðuÞ ¼ 1

2
ðxi;j;k � xmÞ2o2

xu
��
i;j;k
þ ðyi;j;k � ymÞ

2
o2

yu
���
i;j;k

� �
þ ðxi;j;k � xmÞðyi;j;k � ymÞoxyuji;j;k : ð9Þ
To compute o2
xuji;j;k , o2

yuji;j;k and oxyuji,j,k, we use the fourth-order-accurate central differences applied to the components of the normal

vector n ¼ ðDx

Dx;
Dy

DyÞ. The ‘‘attractor’’ function equation (7) is minimized using parabolic interpolation and Brent’s method [31]. Typically,

this minimization procedure converges within 10–20 iterations to a tolerance of 10�9.

(b) Then, the Hamiltonian H equation (6) is computed as suggested by Sussman et al. [39,41]:
Hi;j;k ¼ eS i;j;kð1�Duji;j;kÞ; ð10Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where Du ¼ ðDx

DxÞ
2 þ ðDy

DyÞ
2 þ ðDz

DzÞ
2 is dicretized using the following upwinding algorithm (shown for Dx

only):
if wL
x > 0 and wL

x þ wR
x > 0 , Dx ¼ Dx;L

i;j;k

if wR
x < 0 and wL

x þ wR
x < 0 , Dx ¼ Dx;R

i;j;k

otherwise , Dx ¼ 0

ð11Þ
where wL
x ¼ Si;j;kD

x;L
i;j;k and wR

x ¼ Si;j;kD
x;R
i;j;k

The undivided differences Dx;y;z at cell centers are reconstructed with WENON, where N is chosen to be consistent with the order of
discretization of the level set equation (2).
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Our experience is consistent with what is already known – a few reinitialization steps at each physical time
step are sufficient to condition the LS function, so that complete reinitialization to near steady-state is only
needed once in awhile (typically, every 20–100 physical time steps). We actually employ these few steps only
in the annular portion of the corridor, which also saves in computation effort of the minimization problem,
Eq. (7).

In regards to costs, the following summarizes our experience: (a) the most expensive part is the computation
of the Hamiltonian, especially since we found it is necessary, as do others, to use (non-linear) WENO3; (b) the
cost of the minimization step is by comparison limited, as it is only needed within one cell on either side of the
interface, while the Hamiltonian needs to be computed everywhere inside the ‘‘outer’’ tube; (c) as a specific
example, the cost of our procedure applied to Problem #6 (see Section 5.1.1 and Fig. 4) is 20% more compared
to [41].
5. Numerical examples

We will consider two groups of numerical examples. In the first group, the velocity field is prescribed. The
areas of concern for judging success of the interface kinematics treatment include (i) the method’s ability to
faithfully capture poorly-resolved interface structures, such as thin elongated filaments and corners; (ii) high-
order grid convergence; (iii) mass conservation; and (iv) efficiency of computations. We will consider not only
problems with stationary shapes of interface (i.e., simple translations and solid-body rotations), but also those
involving continuously refining length scales (interface stretching, tearing, severe deformation and fragmenta-
tion). The focus is placed on performance at the limit of grid resolution (1–3 nodes per interfacial topological
features), as practical problems of interest here are multiscale multiphase flows with evolving, continuously refin-
ing length scales (e.g., Rayleigh–Taylor mixing, bubble collapse and drop fragmentation). Considering that in
3D the actual cost of doubling grid resolution is (·16), all gains made in pushing the limits of grid resolution are
of enabling significance. We consider a wide spectrum of numerical tests, including all those known from past
work, as well as embellishments on them, such as the combined rotation/translation of a ‘‘crusiform’’.

Numerical examples of the second group involve full coupling of interface kinematics with the dynamics of
the two fluids, and these are chosen to range from incompressible flow (Rayleigh–Taylor mixing) to highly
compressed states in two fluids of great acoustic impedance mismatch (shock-induced bubble collapse).

In all simulations presented here, we apply second-order extrapolations as boundary conditions for the level
set equation. For computation of mass in two dimensions, we use a second-order-accurate algorithm. In par-
ticular, we first find subcell positions of the interface as the cut points of zero level with gridlines, and then
piecewise-linearly reconstruct the subcell area as a collection of polygons, using the subcell cut points as their
vertices. In three dimensions, the volume is computed using the first-order algorithm as described by Enright
et al. in [8].

AMR calculations will be denoted as SAMRA=B
C , where A is the grid refinement ratio between levels of adap-

tation in a hierarchy of SAMR grids, B is the total number of levels in a hierarchy, and C is the effective grid
resolution or grid size if corresponding uniform grids were to be applied over the whole domain.

The following parameters are used for SAMR grid generation: (1) the Berger and Rigoutsos’s point-clus-
tering algorithm [4] is applied (using a binary tree communication with hand-coded sends and receives); (2) the
efficiency tolerance (i.e., a threshold value for the percentage of tagged cells in each SAMR box) is set to 90%;
(3) the combine tolerance (i.e., a threshold value for the sum of the volumes of two boxes into which a box
may be potentially split) is specified at 80%. More detail explanation of these parameters can be found in [34].
5.1. Fidelity tests for interface kinematics

Following a description of all problems considered (including illustrations of the type of under-resolution
failures involved), we present and discuss the results by focusing on a succession of issues as follows: (a) the
role of limiters, (b) the role of discretization order and grid convergence, and (c) the role of AMR and
3 PDE-reinitialization equation (1) is non-linear. Therefore, unlimited HOUC interpolations are unstable.



Table 3
Descriptions of numerical problems

# Domain Velocity field Initial shape/location Duration (tend)

I. Solid-body translation/rotation

1 2 u = 1 A thin filament of thickness
h = 0.0125 at x = 0.5.

1

2 100 · 100
u ¼ p

314ð50� yÞ
v ¼ p

314ðx� 50Þ A slotted disk of radius 15
at x = (50;75). The width and
length of the slot are 5 and 25,
respectively.

628

One solid-body revolution
by t = 628 (Fig. 6)

3 1 · 1
u ¼ pð0:3� y þ 0:4tÞ � 0:4
v ¼ pð0:7� xþ 0:4tÞ þ 0:4

A ‘‘crusiform’’ of width
h = 0.02 and length scale
L = 0.2 at x = (0.7;0.3) and
tilted on 45�.

1

A full rotation and translation
left-upwards

by t ¼ 2
ffiffi
2
p

5 (Fig. 7)

II. Moderate interface deformation, tearing and stretching

4 1 · 1
u ¼ �2 cosðpt

T Þ cosðpyÞ sin2ðpxÞ sinðpyÞ
v ¼ 2 cosðpt

T Þ cosðpxÞ sin2ðpyÞ sinðpxÞ
A circle of radius 3

20

at x ¼ ð12; 3
4Þ.

T = 2 and 8

One period of circle’s stretching
and compression (Fig. 8)

5 1 · 1 · 1

u ¼ 2 cosðpt
3 Þ sin2ðpxÞ sinð2pyÞ sinð2pzÞ

v ¼ � cosðpt
3 Þ sin2ðpyÞ sinð2pxÞ sinð2pzÞ

w ¼ � cosðpt
3 Þ sin2ðpzÞ sinð2pxÞ sinð2pyÞ

ðSee streamlines in Fig: 9aÞ

A sphere of radius 3
20

at x ¼ ð12; 3
4Þ.

3

One period of sphere’s stretching
and compression (Fig. 9)

III. Severe (ultimately unresolvable) interface deformation, tearing and stretching

6 1 · 1
u ¼ �2 cosðpyÞ sin2ðpxÞ sinðpyÞ
v ¼ 2 cosðpxÞ sin2ðpyÞ sinðpxÞ A circle of radius 3

20

at x ¼ ð12; 3
4Þ.

5

Approximately 4.5 rings
of the spiral (Fig. 10)

7 1 · 1
u ¼ sinð4pðxþ 1

2ÞÞ sinð4pðy þ 1
2ÞÞ

v ¼ cosð4pðxþ 1
2ÞÞ cosð4pðy þ 1

2ÞÞ
ðSee Fig:11Þ

A circle of radius 3
20

at x ¼ ð12; 3
4Þ.

1

Severe deformation of a circle
(Figs. 12 and 13)

8 1 · 1
u ¼ cosðptÞ sinð4pðxþ 1

2ÞÞ sinð4pðy þ 1
2ÞÞ

v ¼ cosðptÞ cosð4pðxþ 1
2ÞÞ cosð4pðy þ 1

2ÞÞ
A circle of radius 3

20

at x ¼ ð12; 3
4Þ.

2

One period of severe
circle’s stretching and compression

All velocity fields are solenoidal.
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comparison with PLS. Having established in (a) the value of unlimited HOUCs, items (b) and (c) are consid-
ered only in terms of them.

5.1.1. Problems considered

Descriptions of the eight test-problems considered are provided in Table 3. As indicated, they belong to
three subgroups.

Those in Subgroup I (Problems #1–3) involve solid-body rotations and translations. In particular, we con-
sider translation of a thin filament (Problem #1); solid-body rotation of ‘‘Zalesak disk’’ [47], Fig. 6 (Problem
#2); and combined rotation/translation of a ‘‘crusiform’’, Fig. 7 (Problem #3). Problem #3 is introduced here,
as we found it to be more capability-straining than the ‘‘Zalesak disk’’ test [47].

In the problems of Subgroup II (#4 and #5) the interface is subjected to moderate (resolvable) tearing,
stretching and deformation. The ‘‘2D convection/stretching in a time-reversed single-vortex’’ (Problem #4,
Fig. 8) was originally introduced in [33]. It involves periodical stretching/compression of a circle, forcing
the interface to return to its original circular shape at the end of each cycle. Somewhat similar is Problem
#5, Fig. 9 (‘‘3D convection/stretching in a time-reversed double-vortex’’), introduced in [8]. Here, the sphere



Fig. 6. Illustration of one rotation of the ‘‘Zalesak disk’’ (Problem #2). SSP-RK3,3/UC7 scheme on SAMR4=3

16002 .

Fig. 7. Trajectory of the rotating and translating ‘‘crusiform’’ (Problem #3). SSP-RK3,3/UC11 scheme on SAMR4=3

8002 .
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is entrained by two rotating vortices, which tear the sphere apart, creating a pancake-like structure by the time
of maximum deformation t = 1.5. At the end of each cycle, the interface should return to its original spherical
shape and Fig. 9 illustrates how it may fail to do so when under-resolved.

The most challenging problems belong to Subgroup III (Problems #6, #7 and #8), which is characterized
by continuously refining length scales, and the interface subjected to extreme (ultimately unresolvable) tear-
ing, stretching and deformation. Problem #6 (‘‘2D convection/stretching in a single-vortex’’), introduced in
[33], involves a circle stretched into a long spiral filament by a single-vortex. By time t = 5, there are approx-
imately 4.5 rings in the spiral, Fig. 10. With continuing stretching, the spiral filament becomes thinner and
thinner. Problems #7 and #8 (‘‘2D convection/stretching in a multiple-vortex’’) involve deformation of a cir-
cular body in very complex velocity field (Fig. 11). By the time of maximum deformation, the major fraction
of the circle is entrained into the two nearest (left and right) vortices, while the rest (smaller portion) is



Fig. 8. ‘‘2D convection/stretching in a time-reversed single-vortex’’ (Problem #4). Top: Evolution of interfacial shape and AMR patches
for T = 2 (SSP-RK3,3/UC7 scheme on SAMR4=3

16002 ). Bottom: Evolution of interfacial shape for T = 8 (SSP-RK3,3/UC11 scheme on
SAMR2=3

5122 ).
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entrapped as thin filaments by other four nearest vortices, see Figs. 12 and 13. In difference to Problem #7,
Problem #8 is set to be oscillatory (time-reversed), forcing the circle to return to its original shape by the end
of each cycle.

5.1.2. The role of limiting

Illustrative comparisons of HOUC (unlimited) and WENO (limited) schemes for Problems #2, 3, 4 and #6
are presented in Figs. 14–16 and 22a. The global message is conveyed by Table 4, which demonstrates superior
mass conservation properties of HOUCs.



Fig. 9. Evolution of interfacial shape for one cycle of the ‘‘3D convection/stretching in a time-reversed double-vortex’’ (Problem #5). SSP-
RK3,3/UC7 scheme. Solution with grids: (a) 503, (b) SAMR2=2

1283 , (c) SAMR2=3

2563 and (d) SAMR2=4

5123 .
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Evidently, HOUC schemes are able to capture fine interface topological features significantly better than
WENOs. The case of ‘‘Zalesak disk’’ with grid resolution of 2.5 nodes per slot’s width is illustrated in
Fig. 14. After one revolution, the WENO5 smears the slot severely. With UC5, the corners of the slot are
resolved significantly better. By increasing the accuracy of discretization to the seventh order, the performance
of WENO is significantly improved, becoming comparable to the UC5, but still inferior to the UC7. More sig-
nificant detrimental effects of limiting are observed for the rotating and translating ‘‘crusiform’’, Fig. 15. In
this case, under a grid of two nodes per branch width, the WENO5 resulted in a complete disappearance of
the ‘‘crusiform’’. Significant smearing occurs also for the WENO7. With HOUC, the fidelity of interface kine-
matics is significantly higher, allowing to maintain high resolution of thin filaments and corners. For this prob-
lem, the UC5 performed significantly better than WENO7, Fig. 15. The same detrimental effects of limitings
are also recorded for interface stretching flows, shown as an example in Fig. 16, at the stage when the grid
provides two computational nodes over the filament width.

The generally poor performance of limiting at the limits of grid resolution is due to effective reduction
of the discretization order of the WENO interpolation. The Nth-order-accurate WENON reconstruction
scheme for cell-centered discrete undivided differences D

x;L=R
i;j;k is a combination of n ¼ Nþ1

2
, nth-order

polynomials:



Fig. 11. Velocity field for the ‘‘2D convection/stretching in a multiple-vortex’’ (Problems #7 and #8).

Fig. 10. Evolution of interfacial shape and AMR patches for the ‘‘2D convection/stretching in a single-vortex’’ (Problem #6). SSP-RK3,3/
UC7 scheme on SAMR4=3

16002 .
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PWENON ðxÞ ¼
Xn�1

k¼0

-ðnÞk P
ðnÞ
k ðxÞ ð12Þ
where -ðnÞk are non-linear weights:
-ðnÞk ¼
aðnÞk

aðnÞ0 þ � � � þ aðn�1Þ
n

; and aðnÞk ¼
CðnÞk

ð10�10 þ ISðnÞk Þ
2

ð13Þ



Fig. 12. Evolution of interfacial shape for the ‘‘2D convection/stretching in a multiple-vortex’’ (Problem #7). SSP-RK3,3/UC7 scheme.
Orange thick dashed line: uniform 1282 grid. Black thin solid line: SAMR4=4

81922 .

Fig. 13. A closer look at the poorly-resolved filaments entrained into the four nearest vortices located below, for the ‘‘2D convection/
stretching in a multiple-vortex’’ (Problem #7), and illustration of failure when under-resolved. SSP-RK3,3/UC7 scheme. Orange thick
dashed line: uniform 1282 grid. Black thin solid line: SAMR4=4

81922 . As a background, the computational mesh at resolution 1282 is also
shown.
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Fig. 15. The effect of non-linear weights on resolution of the crusiform (Problem #3). Grid is set at two nodes per branch width (1002).

Fig. 14. The effect of non-linear weights on resolution in corners and slot after one rotation of the ‘‘Zalesak disk’’ (Problem #2). Grid is set
at 2.5 nodes per slot width (502).
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designed to ‘‘catch’’ discontinuities of the interpolated function4 and ‘‘essentially eliminate’’ oscillations asso-
ciated with them [5]. It is easy to demonstrate that, with ‘‘optimal’’ weights -ðnÞk ¼ CðnÞk , reconstructions accord-
ing to Eq. (12) are identical to HOUC schemes (Table 2), and this is why these schemes were denoted as
‘‘Linear WENO’’ (LWENO) in our previous studies [24–26]. Smoothness estimators ISðnÞk for WENO schemes
up to 11th-order are developed by Jiang and Shu [17] and Balsara and Shu [5]. As a consequence, greater
weights are assigned to WENO’s constituent polynomials located further from the interface. By doing this,
4 As discussed in Section 2, the level set is a continuous function, making this kind of limiting unnecessary.



Table 4
Effect of limiting on mass conservation

# Problem Grid resolution Scheme Error

2 502 WENO5 7%
UC5 3.2%

3 1 node/h WENO5 100%
WENO7 100%
UC5 86.9%
UC7 56.1%

2 nodes/h WENO5 100%
WENO7 81.8%
UC5 4.05%
UC7 1.76%

4 nodes/h WENO5 5.5%
WENO7 4.07%
UC5 2.63%
UC7 1.5%

Fig. 16. The effect of non-linear weights on resolution of thin interface structures in the ‘‘2D convection/stretching in a single-vortex’’
(Problem #6). WENO7 scheme vs. UC7, using grid 1002. t = 2. There are 2 nodes per filament width at this stage.
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extra numerical diffusion is introduced – so that in practice the accuracy of WENO schemes is always between
nth and Nth order.

This is demonstrated in Fig. 17, which shows spatial distribution of non-linear weights of WENO5 for
numerical example 1. In particular, upstream from the filament, the weight of the right (downstream) polyno-
mial is essentially reduced to zero, putting the greater weight to the left (downstream) polynomial, effectively
reducing the stencil of the scheme and actual accuracy of discretization. Clearly, these non-linear weights hav-
ing been developed for discontinuous functions (designed for capturing shocks and contacts in hyperbolic con-
servation laws), end up behaving inappropriately when applied to smooth function such as the LS.

Furthermore, non-linear WENO schemes are expensive, as the computation of the smoothness estimators
ISðnÞk and non-linear weights, Eq. (13), leads to approximately 50% increase in computational time for WENO5

(more at higher order). As a result, even the most expensive 11th-order UC is comparable to WENO5 and
approximately 30% faster than WENO7.

5.1.3. The role of discretization order and grid convergence

The effects of accuracy of HOUC schemes and grid convergence are shown in Figs. 18–22a. Evidently, with
increasing the order of dicretization, from the 3rd- to the 11th-, resolution of thin filaments and other fine-grain
interface structures improved significantly. Correspondingly, mass conservation errors become smaller (Table 5).



Fig. 17. Spatial distribution of non-linear weights for WENO5 scheme, applied for Problem #1. Grid resolution is 2 nodes per h.

Fig. 18. The effect of accuracy of discretization scheme on resolution of corners and slot after one rotation of the ‘‘Zalesak disk’’ (Problem
#2). Grid is set at 2.5 nodes per slot width (502).
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As one can see from Fig. 21, all schemes converge with the rate between the first and second order. This is
because derivatives of the exact level set function are discontinuous (at the centers of the filament, problem #1;
and corners of the ‘‘crusiform’’, problem #3), which imposes first-order truncation errors for interface nor-
mals. The HOUC treatment is nevertheless stable, as the ‘‘corner-capturing’’ features of the level set method



Fig. 19. The effect of accuracy of discretization scheme on resolution of the ‘‘crusiform’’ (Problem #3) after t ¼ 2
ffiffi
2
p

5
. Grid is set at one node

per branch width (502).

Fig. 20. The effect of discretization order (HOUC) on resolution of thin interface structures in the ‘‘2D convection/stretching in a single-
vortex’’ (Problem #6). t = 5. Grid is set at 1–2 nodes per filament width (1282).
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Fig. 21. Grid convergence of HOUC schemes for Problems #1 (a) and #3 (b), expressed in terms of L1-norm of the error for the level set.
Convergence rates for UC3, UC5 and UC11 are also shown for grid intervals (1 [ 2) and (8 [ 16) nodes/h.

R.R. Nourgaliev, T.G. Theofanous / Journal of Computational Physics 224 (2007) 836–866 855



Fig. 22. Final shape of interface for Problem #4 with T = 8. (a) The effect of discretization order (HOUC). (b) Grid convergence of UC11

scheme (uniform-grid-5122 and SAMR2=3

5122 solutions are nearly identical).

Table 5
Effect of discretization order and grid convergence on mass conservation

# Problem Grid resolution Scheme Error

2 502 UC5 3.2%
UC7 1.1%

1002 UC5 1.44%
UC7 0.8%

2002 UC7 0.16%

3 1 node/h UC5 86.9%
UC7 56.1%
UC9 31%
UC11 27.2%

2 nodes/h UC5 4.05%
UC7 1.76%
UC9 0.58%
UC11 0.23%

4 nodes/h UC5 2.63%
UC7 1.5%
UC9 0.4%
UC11 0.15%

6 1282 UC5 8.04%
UC7 5.14%
UC9 4.05%

2562 UC7 3.08%

SAMR
4=3

16002 UC7 0.33%
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are embedded through the ‘‘numerical smearing/surface tension’’ of the Eulerian treatment, providing a suf-
ficient numerical regularization with a proper vanishing-viscosity-solution, see Fig. 23. Even though all tested
numerical schemes converge with the rate between the first and second order, higher-order treatment exhibits
significantly lower discretization errors (Fig. 21).



Fig. 23. Grid convergence of UC7 scheme. Interface after one rotation of the ‘‘Zalesak disk’’ (Problem #2). Computational grids are: 502

(thick solid line), 1002 (thin dashed line), 2002 (thin dash-dot line) and 16002 (thin solid line, indistinguishable from the exact).

Fig. 24. Grid convergence of UC7 for the ‘‘2D convection/stretching in a single-vortex’’ (Problem #6). t = 5. The effective resolution 16002

is by AMR.
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It is understood that the introduced here improvement of the LS treatment is at cost of maintaining larger
stencils. Even though the computational overhead is marginal (e.g., UC11 is found to be only 30% more expen-
sive than UC5), this imposes certain complications in coding. As a consequence, implementation of HOUC
schemes on quad/octree-based AMR may be difficult.

5.1.4. The role of AMR and comparison to PLS

Practical applications of our interest here involve multiscale multiphase problems with continuous breakup
of interfaces and evolving, continuously refining length scales. It is obvious that a successful modeling of these
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flows requires ability to provide an adequate effective density of underlying datasets. Our approach in this
regard consists of incorporating Structured Adaptive Mesh Refinement, which not only enforces the fidelity
of capturing fine-grain interfacial features (at the level comparable to the best particle-based methods), but
also provides an adequate resolution of near-interfacial boundary layers, when coupled with fluid dynamics
solvers.

The effectiveness of SAMR is demonstrated on problems (#5–8), which involve a drastic thinning of the
interface, which eventually becomes unresolvable. Illustrative results of grid refinement as afforded by
AMR are shown in Figs. 12, 13, 24, 26 and 27, and Table 6.

The performance of our SAMR- and HOUC-based approach is comparable to the PLS methods by
Enright et al. [8] and Hieber and Koumoutsakos [15]. Comparative analysis of mass conservation errors is
presented in Table 6. The results for the interface rotation, translation and moderate stretching problems
#1–4 are comparable and even better than those of the PLS method (e.g., Fig. 25). For numerical problems
#7 and #8 with severe interface tearing, our SAMR4=4

81922 solutions are also comparable to the high-resolution
particle-tracked ones, presented in Fig. 13b of [33] and Fig. 24 of [8]; and better than the solution by PLS-
WENO5 (Fig. 24 of [8]). Importantly, adequate resolution of thin filaments and associated physics is possible
only based on appropriately dense underlying datasets, Eulerian (provided by SAMR) here or Lagrangian
(seeded particles) in [33] and [8], both non-strictly conservative. It may be worth of noting that fully conser-
vative interface treatments, like VOF [33], conservative LS [27], or their combinations [42], are not capable of
this kind of fidelity. In fact this is a case in point where mass conservation can produce a false sense of security,
as the fidelity of the interface position can really suffer (the well-known blobby structures due to numerical
surface tension [19,33]). In the 3D problem #5, our AMR simulation with effective grid resolution 5123
Fig. 25. Shape of interface for t = 3 of Problem #6. (a) WENO5, PLS (5122-equivalent) and highly-resolved front-tracking solutions from
[8]; (b) PLS solution with remeshing and reinitialization (4161 particles, �642-equivalent) from [15]; (c) PLS solution with remeshing and
reinitialization (55,914 particles, �2562-equivalent) from [15]; (d–f) present study.



Fig. 26. History of mass conservation errors for the ‘‘2D convection/stretching in a multiple-vortex’’ (Problem #7). SSP-RK3,3/UC7

scheme.

Fig. 27. Final shape of interface after one cycle of the ‘‘time-reversed 2D convection/stretching in a multiple-vortex’’ (Problem #8). SSP-
RK3,3/UC7 scheme.

R.R. Nourgaliev, T.G. Theofanous / Journal of Computational Physics 224 (2007) 836–866 859
(Fig. 9d) is comparable to the PLS-WENO5-based one [8,9], which employed initial seeding of 64 particles per
interfacial cell and effectively corresponding to the same density of underlying dataset.

It is worth of noting that three-dimensional uniform 5123 grid consists of approximately 134 million nodes,
while the actual number of computational cells for SAMR2=4

5123 has varied between 9 and 20 millions. This gives
an order of magnitude improvement in memory and computational speedup.

Finally, we would like to emphasize that grid adaptation by SAMR provides not only sufficiently
dense underlying data structure for resolution of fine interface structures, but also an adequate resolution of



Table 6
Comparison to the particle level set (PLS) method

# Problem Reference Grid resolution Scheme Error

2 Enright et al. [8] 502 WENO5 100%
PLS-WENO5 14.9%

Present study WENO5
a 7%

UC5 3.2%
UC7 1.1%

Enright et al. [8] 1002 WENO5 5.3%
PLS-WENO5 0.31%

Present study UC5 1.44%
UC7 0.8%

Enright et al. [8] 2002 WENO5 0.54%
PLS-WENO5 0.2%

Present study UC7 0.16%

4 (with T = 8) Marchandise et al. [20] 642 DG TRI(4) 0.24%

Enright et al. [8] 1282 WENO5 39.8%
PLS-WENO5 0.71%

Hieber & Koumoutsakos [15] PLS 4.2%
Present study UC7 2.77%

5 Enright et al. [8] 1003 WENO5 80%
PLS-WENO5 2.6%

Present study 503 UC7 15.17%
SAMR

2=2

1283 0.50%

SAMR
2=3

2563 0.45%

SAMR
2=4

5123 0.42%

8 Enright et al. [8] 1282 WENO5 17.2%
PLS-WENO5 0.03%

Present study 1282 UC7 5.26%

SAMR
4=4

81922 UC7 0.039%

a The difference between our’s and Enright’s et al. [8] WENO5 results is most probably associated with different treatment of reini-
tialization (PDESM-based here vs. FM-based in [8]).
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interfacial boundary layers of (compressible) fluid dynamics; while the PLS methods [8,15] are not designed for
this purpose. If someone is interested in only interfacial dynamics, particle-based Lagrangian methods [8,15]
are more efficient, as the total number of supported data units (particles) is smaller than the total number of
SAMR cells.

5.2. ‘‘Rayleigh–Taylor instability’’

A heavy fluid (density qh) is placed atop of a layer of a lighter fluid (density ql) in the gravitational field.
Small perturbations are added to the interface, by generating the level set as
uðxÞ ¼ y � H 0 þ �
X7

i¼0

cos
pxi

W
x

� �" #
; ð14Þ
where W is the width of the computational domain, H0 is the position of the undisturbed interface,
� = 1.25 · 10�4 is the amplitude of initial disturbances and xi are the wavenumbers involved (4, 14, 23, 28,



Fig. 28. Dynamics of the interface for a multi-mode Rayleigh–Taylor instability test, at At = 0.75, and including interfacial tension.
SAMR2=4

512=W .

Fig. 29. Grid convergence for a multi-mode Rayleigh–Taylor instability test, t = 2.

Table 7
Summary of the simulation data for ab

Youngs [45,46] VOF 1984 ab � 0.04–0.05
He et al. [14] LBE 1999 ab � 0.04
Glimm et al. [12] FT 2001 ab � 0.07
Present study LS 2005 ab � 0.06–0.07
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Fig. 30. Kinematics of interface during shock-induced bubble collapse. Time is shown in ls. SAMR2=6
800=D.

Fig. 31. Mach field and SAMR mesh for shock-induced bubble collapse. Bubble breakup stage. SAMR2=6
800=D.
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Fig. 32. Mach and pressure fields at the final stage of the shock-induced bubble collapse. t = 4.5 ls. SAMR2=6
800=D.
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33, 42, 51, 59). Simulations are started from the motionless configuration with the initial pressure field pre-
scribed by the local hydraulic head. A density ratio qh

ql
¼ 7 is specified to produce an Atwood number of

0.75. The kinematic viscosities are chosen to get Reh = 1000 and Rel = 2000, where the Reynolds numbers
are defined by Rek ¼

ffiffiffiffi
Wg
p

W
mk

. Surface tension was also included and set to ~r ¼ r
r0
¼ 7

80
, where

r0 ¼ ðqh þ qlÞðgm4
hÞ

1=3 (see [6]). Computations are performed in the (1 · 8) domain, using boundary conditions
which are periodical in horizontal direction and no-slip (solid wall) at the top and bottom.

For simulation of fluid dynamics in a nearly-incompressible regime, the SSP-RK3,3/UC7-based pseudocom-
pressible solver for multifluid flows is applied [23,25]. Interface jump conditions (density, viscosity, stresses
and surface tension) are captured sharply, as described in [25]. The level set equation is discretized using
the UC7 scheme.

Fig. 28 illustrates the dynamics of the instability progressed well into the non-linear regime with significant
mixing, including severe interface deformation and stretching. There are eight distinct waves growing from the
initially perturbed interface. It can be seen that at the early stage the waves grow nearly independent of each
other. Eventually, strong interactions develop, causing significant turbulent-like mixing with vortex dipoles of
length scales significantly larger than the initial perturbation.

The effect of grid resolution on interface structure in the non-linear regime is shown in Fig. 29. The solution
is grid convergent, corresponding to the decrease of mass conservation errors from 0.2% (on the grid 256/W)
to 0.08% (on the grid 512/W).

The bubble acceleration constant ab provides the most basic characterization of the Rayleigh–Taylor
instability growth in the non-linear regime, hb(t) = abAt gt2, where hb(t) = (yb(t) � H0) is the position of
the bubble front. The ability of correct prediction of ab was an issue for many years [12,14,45,46]. Earlier
simulations tend to underpredict ab, experimentally measured to be in the range between 0.06 and 0.07
(see [12]). Our ab is consistent with the most recent simulations by the advanced front-tracking approach,
see Table 7.



Table 8
Mass conservation errors for the ‘‘shock-induced bubble collapse’’

Resolution 2.6 ls Rate 4 ls Rate

200/D �3.11% – �20.74% –
400/D �1.99% 0.644 �13.87% 0.580
800/D �1.19% 0.742 �9.64% 0.525

1600/D �0.80% 0.573 �6.80% 0.503
3200/D �0.52% 0.621 �4.73% 0.524

Fig. 33. Bubble resolution at the final stage of the collapse. Upper half. Black thin line: 200/D; red thicker line: 400/D; and blue thickest
line: 800/D. The shown underlying mesh corresponds to resolution of 200 nodes/Dia.
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5.3. ‘‘Shock-induced bubble collapse’’

A 6 mm-in-diameter cylindrical air bubble is suspended in a water pool and it is hit by M = 1.72 shock
wave coming on from the left. The center of the bubble is at xb = (12,12) mm of the computational domain
(24 · 24) mm. Initial conditions are: u = (0,0) m/s, P = 105 Pa, qair = 1 kg/m3 and qwater = 1000 kg/m3 (pre-

shock); and u = (681.58, 0) m/s, P = 1.9 · 109 Pa, qwater = 1323.65 kg/m3 (post-shock); with initial shock
placed 5.4 mm to the left of the air bubble center. Parameters of the stiffened-gas EOS
P ¼ ðc� 1Þqi� cP; where i is a specific internal energy
are
c
P

� �
¼ 4:4

6� 108

� �
and

1:4
0

� �
for water and air, respectively. BCs are periodical in the vertical direction

and non-reflection at the left and right boundaries of the domain. Upon the impact by the shock, the gas bub-
ble collapses, Figs. 30–32. For treatment of interfacial boundary conditions, the adaptive characteristics-based
matching approach (aCBM) is applied [26]. Surface tension and viscosity are neglected. Here, we employed
SSP-RK3,3/WENO5-based discretization of gas dynamics (see for details [26]) and UC7 for the level set.

Computations were performed on a sequence of grids: SAMR2=4
200=D, SAMR2=5

400=D, SAMR2=6
800=D, SAMR2=7

1600=D
and SAMR2=8

3200=D, where we use the initial diameter of bubble to indicate effective grid resolution. Mass of the
gas was computed with the first-order-accurate piecewise-constant algorithm, integrating (q(i,j)DxDy) over all
cells with negative level set.

Mass conservation errors are presented in Table 8 for time 2.6 and 4.0 ls, corresponding to mid- and final
stages of bubble collapse. For the best grid of 3200 nodes/D, mass conservation is maintained below 5%, even at
the latest stages of the collapse, near the grid resolution limit of the underlying dataset, see Fig. 33. With grid
refinement, mass conservation errors decrease with rates varying between 0.503 and 0.742. The most severe
mass losses occur for t > 4 ls, when thin filaments and poorly-resolved fragmented bubbles begin to develop.
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6. Conclusion

We have demonstrated that high-fidelity interface tracking can be achieved within a purely Eulerian treat-
ment of the level set method. Our approach is based on limiting numerical discretization errors as effected by
combining high-order upstream central (HOUC) schemes with structured adaptive mesh refinement (SAMR).
In terms of ability to describe interface structures at the limits of resolution and essentially eliminating mass
conservation errors, the level of fidelity achieved is comparable to the Lagrangian-based MP and PLS
methods.

The other prominent features include a new technique for anchoring the interface during PDE-reinitializa-
tion and a non-linear algorithm for interface detection during AMR tagging, allowing to eliminate spurious
oscillations and improve effectiveness of adaptive mesh refinement.

The developed here Eulerian unlimited anchored adaptive level set (ua2LS) is particularly useful for simu-
lation of compressible multifluid flows, especially of highly unstable interfaces.
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